3.2.16 \(\int \frac {\cos ^{\frac {5}{2}}(c+d x) (A+C \cos ^2(c+d x))}{\sqrt {b \cos (c+d x)}} \, dx\) [116]

Optimal. Leaf size=113 \[ \frac {(4 A+3 C) x \sqrt {\cos (c+d x)}}{8 \sqrt {b \cos (c+d x)}}+\frac {(4 A+3 C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{8 d \sqrt {b \cos (c+d x)}}+\frac {C \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{4 d \sqrt {b \cos (c+d x)}} \]

[Out]

1/8*(4*A+3*C)*cos(d*x+c)^(3/2)*sin(d*x+c)/d/(b*cos(d*x+c))^(1/2)+1/4*C*cos(d*x+c)^(7/2)*sin(d*x+c)/d/(b*cos(d*
x+c))^(1/2)+1/8*(4*A+3*C)*x*cos(d*x+c)^(1/2)/(b*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 113, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {17, 3093, 2715, 8} \begin {gather*} \frac {x (4 A+3 C) \sqrt {\cos (c+d x)}}{8 \sqrt {b \cos (c+d x)}}+\frac {(4 A+3 C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{8 d \sqrt {b \cos (c+d x)}}+\frac {C \sin (c+d x) \cos ^{\frac {7}{2}}(c+d x)}{4 d \sqrt {b \cos (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^(5/2)*(A + C*Cos[c + d*x]^2))/Sqrt[b*Cos[c + d*x]],x]

[Out]

((4*A + 3*C)*x*Sqrt[Cos[c + d*x]])/(8*Sqrt[b*Cos[c + d*x]]) + ((4*A + 3*C)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(8
*d*Sqrt[b*Cos[c + d*x]]) + (C*Cos[c + d*x]^(7/2)*Sin[c + d*x])/(4*d*Sqrt[b*Cos[c + d*x]])

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 17

Int[(u_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Dist[a^(m + 1/2)*b^(n - 1/2)*(Sqrt[b*v]/Sqrt[a*v])
, Int[u*v^(m + n), x], x] /; FreeQ[{a, b, m}, x] &&  !IntegerQ[m] && IGtQ[n + 1/2, 0] && IntegerQ[m + n]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 3093

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos
[e + f*x]*((b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Dist[(A*(m + 2) + C*(m + 1))/(m + 2), Int[(b*Sin[e +
f*x])^m, x], x] /; FreeQ[{b, e, f, A, C, m}, x] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\cos ^{\frac {5}{2}}(c+d x) \left (A+C \cos ^2(c+d x)\right )}{\sqrt {b \cos (c+d x)}} \, dx &=\frac {\sqrt {\cos (c+d x)} \int \cos ^2(c+d x) \left (A+C \cos ^2(c+d x)\right ) \, dx}{\sqrt {b \cos (c+d x)}}\\ &=\frac {C \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{4 d \sqrt {b \cos (c+d x)}}+\frac {\left ((4 A+3 C) \sqrt {\cos (c+d x)}\right ) \int \cos ^2(c+d x) \, dx}{4 \sqrt {b \cos (c+d x)}}\\ &=\frac {(4 A+3 C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{8 d \sqrt {b \cos (c+d x)}}+\frac {C \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{4 d \sqrt {b \cos (c+d x)}}+\frac {\left ((4 A+3 C) \sqrt {\cos (c+d x)}\right ) \int 1 \, dx}{8 \sqrt {b \cos (c+d x)}}\\ &=\frac {(4 A+3 C) x \sqrt {\cos (c+d x)}}{8 \sqrt {b \cos (c+d x)}}+\frac {(4 A+3 C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{8 d \sqrt {b \cos (c+d x)}}+\frac {C \cos ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{4 d \sqrt {b \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.15, size = 67, normalized size = 0.59 \begin {gather*} \frac {\sqrt {\cos (c+d x)} (4 (4 A+3 C) (c+d x)+8 (A+C) \sin (2 (c+d x))+C \sin (4 (c+d x)))}{32 d \sqrt {b \cos (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^(5/2)*(A + C*Cos[c + d*x]^2))/Sqrt[b*Cos[c + d*x]],x]

[Out]

(Sqrt[Cos[c + d*x]]*(4*(4*A + 3*C)*(c + d*x) + 8*(A + C)*Sin[2*(c + d*x)] + C*Sin[4*(c + d*x)]))/(32*d*Sqrt[b*
Cos[c + d*x]])

________________________________________________________________________________________

Maple [A]
time = 0.49, size = 88, normalized size = 0.78

method result size
default \(\frac {\left (\sqrt {\cos }\left (d x +c \right )\right ) \left (2 C \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right )+4 A \sin \left (d x +c \right ) \cos \left (d x +c \right )+3 C \cos \left (d x +c \right ) \sin \left (d x +c \right )+4 A \left (d x +c \right )+3 C \left (d x +c \right )\right )}{8 d \sqrt {b \cos \left (d x +c \right )}}\) \(88\)
risch \(\frac {\left (\sqrt {\cos }\left (d x +c \right )\right ) \left (8 A +6 C \right ) x}{16 \sqrt {b \cos \left (d x +c \right )}}+\frac {\left (\sqrt {\cos }\left (d x +c \right )\right ) C \sin \left (4 d x +4 c \right )}{32 \sqrt {b \cos \left (d x +c \right )}\, d}+\frac {\left (\sqrt {\cos }\left (d x +c \right )\right ) \left (A +C \right ) \sin \left (2 d x +2 c \right )}{4 \sqrt {b \cos \left (d x +c \right )}\, d}\) \(98\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(5/2)*(A+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/8/d*cos(d*x+c)^(1/2)*(2*C*cos(d*x+c)^3*sin(d*x+c)+4*A*sin(d*x+c)*cos(d*x+c)+3*C*cos(d*x+c)*sin(d*x+c)+4*A*(d
*x+c)+3*C*(d*x+c))/(b*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.62, size = 75, normalized size = 0.66 \begin {gather*} \frac {\frac {8 \, {\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} A}{\sqrt {b}} + \frac {{\left (12 \, d x + 12 \, c + \sin \left (4 \, d x + 4 \, c\right ) + 8 \, \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (4 \, d x + 4 \, c\right ), \cos \left (4 \, d x + 4 \, c\right )\right )\right )\right )} C}{\sqrt {b}}}{32 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(A+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/32*(8*(2*d*x + 2*c + sin(2*d*x + 2*c))*A/sqrt(b) + (12*d*x + 12*c + sin(4*d*x + 4*c) + 8*sin(1/2*arctan2(sin
(4*d*x + 4*c), cos(4*d*x + 4*c))))*C/sqrt(b))/d

________________________________________________________________________________________

Fricas [A]
time = 0.43, size = 207, normalized size = 1.83 \begin {gather*} \left [\frac {2 \, {\left (2 \, C \cos \left (d x + c\right )^{2} + 4 \, A + 3 \, C\right )} \sqrt {b \cos \left (d x + c\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - {\left (4 \, A + 3 \, C\right )} \sqrt {-b} \log \left (2 \, b \cos \left (d x + c\right )^{2} + 2 \, \sqrt {b \cos \left (d x + c\right )} \sqrt {-b} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - b\right )}{16 \, b d}, \frac {{\left (2 \, C \cos \left (d x + c\right )^{2} + 4 \, A + 3 \, C\right )} \sqrt {b \cos \left (d x + c\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left (4 \, A + 3 \, C\right )} \sqrt {b} \arctan \left (\frac {\sqrt {b \cos \left (d x + c\right )} \sin \left (d x + c\right )}{\sqrt {b} \cos \left (d x + c\right )^{\frac {3}{2}}}\right )}{8 \, b d}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(A+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/16*(2*(2*C*cos(d*x + c)^2 + 4*A + 3*C)*sqrt(b*cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - (4*A + 3*C)*s
qrt(-b)*log(2*b*cos(d*x + c)^2 + 2*sqrt(b*cos(d*x + c))*sqrt(-b)*sqrt(cos(d*x + c))*sin(d*x + c) - b))/(b*d),
1/8*((2*C*cos(d*x + c)^2 + 4*A + 3*C)*sqrt(b*cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + (4*A + 3*C)*sqrt(
b)*arctan(sqrt(b*cos(d*x + c))*sin(d*x + c)/(sqrt(b)*cos(d*x + c)^(3/2))))/(b*d)]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(5/2)*(A+C*cos(d*x+c)**2)/(b*cos(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(A+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*cos(d*x + c)^(5/2)/sqrt(b*cos(d*x + c)), x)

________________________________________________________________________________________

Mupad [B]
time = 1.93, size = 115, normalized size = 1.02 \begin {gather*} \frac {\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {b\,\cos \left (c+d\,x\right )}\,\left (8\,A\,\sin \left (c+d\,x\right )+8\,C\,\sin \left (c+d\,x\right )+8\,A\,\sin \left (3\,c+3\,d\,x\right )+9\,C\,\sin \left (3\,c+3\,d\,x\right )+C\,\sin \left (5\,c+5\,d\,x\right )+32\,A\,d\,x\,\cos \left (c+d\,x\right )+24\,C\,d\,x\,\cos \left (c+d\,x\right )\right )}{32\,b\,d\,\left (\cos \left (2\,c+2\,d\,x\right )+1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^(5/2)*(A + C*cos(c + d*x)^2))/(b*cos(c + d*x))^(1/2),x)

[Out]

(cos(c + d*x)^(1/2)*(b*cos(c + d*x))^(1/2)*(8*A*sin(c + d*x) + 8*C*sin(c + d*x) + 8*A*sin(3*c + 3*d*x) + 9*C*s
in(3*c + 3*d*x) + C*sin(5*c + 5*d*x) + 32*A*d*x*cos(c + d*x) + 24*C*d*x*cos(c + d*x)))/(32*b*d*(cos(2*c + 2*d*
x) + 1))

________________________________________________________________________________________